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Abstract

A model of the plasma pinch is formulated which
represents the imploding current sheet as an impermeable
piston that drives a gasdynamic shock wave ahead of it
toward the axis of the discharge. This cylindrical
piston-shock problem is solved without further reference
to electromagnetic effects. First the Lagrangian equations
are solved for a parabolic shock trajectory in the r-t
plane yielding a first and second approximation for the
piston trajectory. To determine the accuracy of the
approximation, the same problem is solved for a straight
shock in the r-t plane by the method of characteristics
in using the Eulerian formulation. It is found that the
solutions given by the two methods compare exactly where
a solution to the problem using the method of characteristics
exists. The results are in qualitative agreement with relevant

experimental observations.
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I. INTRODUCTION

The object of the research presented here is to formulate
a theoretical model of the plasma pinch on the basis of gas
dynamics in order to determine what effects observed
experimentally might be due only to the gas dynamics of the
problem.

The plasma pinch under consideration has been described

1/2,3,4 griefly, the physical

by Jahn and von Jaskowsky.
apparatus consists of two plane circular electrodes of four,
five, or eight inches diameter, separated by a two inch gap

of test gas. Typically the test gas is Argon, although several
other gases have been used. The electrodes are connected to

two different types of external circuits--simple lumped capacitor

3’4——which are discharged

arrays, or pulse-forming networks
through the gap via a gas-triggered switch.5 It is observed
that the discharge across the electrodes begins as a cylindrical
sheet at the perimeter of the electrodes and propagates radially
inward, driven by the electromagnetic interaction of the
discharge current with its own magnetic field. The radial.
transit time for the current sheet is on the order of a few
microseconds. Such pinches have been studied quite extensively
by a variety of photographic and internal probe techniquesal'2’6'7
In the study which follows, this pinch process is idealized
to the problem of a radially driven cylindrical piston, representing
the current sheet, generating a gas dynamic strong shock which
propagates ahead of the piston into the undisturbed gas in the

center of the cylinder.




II. THEORY

A. DEVELOPMENT OF MASTER EQUATION

Consider a cylindrical piston of given height but variable
radius. Suppose that suddenly the radius of this piston
decreases so rapidly that a strong shock of very high Mach
number is driven in front of the wall toward the axis of the
cylinder. The question may be posed in two different manners.

If we know the path of the piston in the r-t plane, what will
the shock path look like? Conversely, if we know the shock
path, what piston motion was necessary to drive it? From the
formulation of the problem, it is found to be much easier to
solve the latter case.

The first attempt to solve this problem was made from the
Lagrangian viewpoint of following each particle. The claim is
made that if we are considering two particles that are initially
(before any shock has touched them) located at different radii in
the cylinder, their respective radii will always be such that the
particle initially closer to the axis will always be closer to
the axis. That is, in the r-t plane, the particle paths will
never intersect. This immediately leads to a law for conservation
of mass and a method for labeling each particle. Consider Fig. 1
which shows the path of the piston P(t), the path of the shock
Rs(t), and the path of any particle H(¥ ,t). ¥ will be defined
such that every particle beginning at the same radius will have
the same ¥ , but particles beginning at different radii will
have different (¢ . Once a particle is labeled by a ¥ , it
will retain this value throughout its history. Physically, the
stream function Y corresponds to the mass between the piston
and the particle under question. On the figure, t' refers to
the time when the shock passes over the particle v . Thus,
if the shock trajectory is known, then the stream function may

be said to be a function of t'. Conversely, t' may be regarded




L3

as a function of ¥ .8'9’10’11 Specifically, we define

V=T f, [:_*-st)‘] (1)

L is the initial radius of the chamber. Rs(t') is the radial
position of the particle ¥ before the shock hits it. sz: is
the density of the undisturbed gas. At any later time, ¢ may
be found by taking the integral

H(¢,t)
W= - 2T ¢ (r,t) rdr (2)
P(t)

‘P(r,t) is the density at any point on the r~t plane. Since
there are only two independent variables, we may consider
r=r(¥,t) or we may say that ¥ = ¢ (r,t). The Lagrangian point
of view makes ¥ and t the independent variables.

—

—

Figure 1
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The momentum equation is seen to be

2
p2r._ 2P (3)

atz Or

where p is the pressure acting on the particle to accelerate it.
The process is assumed to be entirely isentropic except for

a jump in entropy as the shock crosses the particle's path.

Therefore, the ratio péf’l is a constant for each particle as

it travels from the shock toward the axis. This constant is

given by the conditions immediately after the shock. The pressure

and density of a particle immediately after the shock has crossed

it will be denoted by the subscript 1. ? is the ratio of specific

heats, assumed constant.

P Py Pl ((V)

77onT e

Note that p{f’ is a function only of the streamline. This
function is known if the shock trajectory is known. That is, Py
and f& can be found by using the strong shock relations in

conjunction with the perfect gas law. Specifically

n

f = Jii_l _Joe

1 3-1 Joo~ g (4)
where EE ;;i
27 2 2 fii(t'
and p, = p g 371 M = Peo J(1- &) -c-z— = pni (1-8&)
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or
p, = Lo (1-€)E (N (5)

Thus the isentropic condition is

P l_j y ]
J’y =f°° E%(1 - €)R (L") (6)

In these relations

is the pressure of the undisturbed gas

M is the Mach number of the shock

U is the velocity of the shock

c is the speed of sound in the undisturbed gas

.S t') is the velocity of the shock as.it crosses the
particle ¥= ¥ (t'). That is, RS2 is the
square of the derivative of the shock trajectory
with respect to time evaluated at the time t'.

These conservation relations will now be combined into one

*
relationship. First, by differentiation, equation (2) becomes

a¥Vv = - ZTTf r dr = —Trf d(r2) (7)

The minus sign is a result of the stream function increasing as
r is decreasing. After dividing through by ;P . this relation

may now be integrated from the shock to an arbitrary stream line




¥ to yield

1
7
R2(t) - H2(p,t) = ‘”’= . ay
p 3

where Ws is the value of 4’ at the shock at any time t. That
is, V’s = ¢g(t). Note that this integration is done at the

time t and not at the time t'. Substituting in the isentropic

relation, we find

¥ L
1-7 : 7
R2w,0) = 20 v 2P £70 - er2en| o)
pd
v

If R, = Rs(t) is given, then we may find a function t - t(Rs).

For example, if Rs = L - At - Bt2, then

5 R
-A +‘l/z; - 4B(Rs - L)

t(Rs) =t = 5B (9)

From the definition of L4 we note that
v (€) = Tp Lz-Tr)o R 2
s [=%) co

where ?S is the value of ¥ at the shock at any time t. Hence

—_
R (¢) = |[1% - -
S T
Therefore
t(R) =t | /L2 i
s’ - TP,




giving

2 __¥
T foo

which is a function only of V’ . Recall that t' is defined

f{s(t')= t L

as the time when the particle W was crossed by the shock.

In the example given above, equation (9) becomes

e
2 2 Yy
-A + AT - 4B L™ - -L
f TMPoo

2B

yielding

R (') = -A - 2Bt' = - /a2 _ 12 . X _
R (t') = -A - 2Bt A 4B /L T L) (10)

This relation will be used later. Let us now determine an

expression for p. From the momentum equation, we find that

2p 22 22 ay
——dr = - P-£ ar = <
2r at2 fatZ 2’ITJ0r

having made use of equation (7). Upon integration from the shock

to any particle ¥ , this becomes
y
2
(y,t) _ _1 2 r(¥,t) avy
prntT = py(t) + 5oy 2 t(¥,t)
2t
¥, ¢

Note that this integration is done at the time t,

time after the shock has crossed the particle ¥

any arbitrary

. Substituting



equation (5) into this expression, the pressure is seen to be

y
_ - 1| 2% (gy) _aw
Py, t) = L (1-€RI(t) + 53 :tz T (11)
%(ﬂ

Putting this information back into equation (8), we find the

master equation

Y .
(1-&)RI(t' = / )
_é__ f“ t t( f“ awy

H2 (¢, t) = R(t) - 7
o
2 ("',t d¥
foo (18R (t)‘“?frj e (o
(,ﬂ

g«)

(12)

Let us nondimensionalize the quantities appearing in the equation

as follows

R
__r_ . _ s . . S
x =L x s g -

T -
T L2 T

~
~

Note that 0 < x, XS, and g = 1. To is chosen so that T is in
microseconds, corresponding to the observation that all discharges
have a pinch time of a few microseconds. The factor nondimension-
alizing the stream function is the total mass contained in the
chamber.

It should be mentioned that H{ WP ,t) is exactly the same
quantity as r( W,t). With these additions, the master equation




becomes

2
g = 1- x2(7)

N
4
«\-

S
dx
S 1
. " gt (t =2( J1-4))
AR AURD [ » ap (13
\} Fsay| » =1 [2%x(@T) _ag
’ d 2(1-¢) 372 x(g,7T)
w2
g =1-x2 (1) )

This equation implies that a particle @ is, at a time T , at

a position, away from the shock by a distance equal to & multiplied
by an integral, the integrand of which consists of a numerator
representing the isentropic condition and a denominator which is

a constant fraction of the pressure, € varies from 0 for =1

to .25 for & = 1.667. Recall that the entire integrand is% .

The piston trajectory is x(0,t); that is, the piston is always

at the particle g = O.

Since the right hand side of the equation involves a second
derivative of the desired solution, a method of iteration must be
used. Due to the difficulty in taking derivatives numerically,
we should search for an analytic solution that may be placed back
into the equation. From this analytic solution, a second

approximation may be found, numerically

.
< £
if necessary, and compared

to the first solution. If the comparison is good, then the
solution may be assumed good. From streak and Kerr-Cell
photographs, it seems that the luminous front in the plasma
pinch always propagates toward the center in a relatively smooth
manner. Hence, most interesting cases may be covered by assuming

a parabolic shock trajectory:




or:

Xs=l-A’f - BT 2
A is the initial nondimensional velocity of the shock and B is
the shock's constant acceleration or deceleration toward the
axis, depending upon whether B is positive or negative,

\ respectively. Substituting this shock trajectory and equation (10),
| modified for the nondimensional variables and shock trajectory,

into the nondimensional master equation, we find

2 4
1-X(7T) 17>

[/
2%+ 48(1 - J1 - @)

x2(¢,1)=x§(t)+e ‘

J (A+2BT)2 - ==

7\

As a first approximation,

does not change much between the shock and the piston.

we assunme 2

1 - X2
1 f 3:%{ agd .
2(1-£)J 52 X ==
7]

This assumption is good when two conditions are met.

must not be too close to the axis.

making 1/x large. Secondly,

respect to T
2

2 "x

r i
integral may approach zero.

in the beginning stages of the piston's propagation.

10

1-x2(7)

szﬂg,fz ag
2(1-¢) 2 x(4,7)

bag (14)

- X4

g J

it may be assumed that the pressure

In effect,

First, we

Otherwise, x will be small,

the second derivative of x with
should be small and preferably negative. If

5~ > 0, then the denominator of the integrand of the large

These conditions are met at least

With this



assumption, equation (12) becomes

1 - X2
s

1/y

2 2 E 2
(g,T) = X°(v) + é+43-43 )1 - g) ag
U S (A+2BT) 2/7

g

which readily integrates to a first approximation for x

X%irst(g't.) = Xg( T) +QG(T) F(T) - Q G(T) H(P) (15)
where
1
2 ¥y
Q=3€§(A + 4B) with p = —32B—
P°( 7 + 1) A + 4B
_2
G(T) = (a+287) 7
(16)
I+1 y 2941
P 4 54
F(T) = sz(l - pxs) + TS (1 - pxs)
7+1 22 +1

H({J)=P/l-¢(l—P/l-¢>T+22,y+l (1—P,I"1"T—6) J

In order to find the second approximation, we must substitute

the second derivative of x (g, T) with respect to T into

first

11



the subintegral of equation (14). Denoting all first derivatives
with respect to T as primes and second derivatives as double

primes, the second derivation may be written as

2(A+2BT)2 - 4BXS + Q(GF" + 2G'F + G"F ~ G"H)

1% _xn _
X 31:2 X 2x2
(17)
[2X_(-A-2BT) + QGF' + QG'F - QG'H] 2
4x4
Letting s = % we find for the derivatives used above that

-2s-1 -2s-2

and G" = 8sB%(2s+1) (A+2BT)

(9]
n

-4sB(A 4—2B‘Z)
F' = P2(s+l)Xs(l - PX_)5(a + 2BT)

2

2 s
-P"(st+1) (1 - PX) (A+2BT )~ - 1 - PX_ -2BX

Fll

]

From this point, we invoke a computer program to perform a
numerical integration to determine & second approximation. This

program is shown and discussed in Appendix A,

B. RESULTS FROM MASTER EQUATION

Graphs showing the piston trajectories for a straight shock,
an accelerating shock, and a decelerating shock are shown in
Figs. 2, 3, and 4. Two values of 7 are used: 1.1 and 5/3.
The latter value is the value for Argon at standard temperatures
and pressures. Though this will not be close to the real value

of 9 after the Argon has experienced ionization, this value

12
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will show the worst qualities of the master equation. As

E = Z;i becomes larger, due to a larger b4 , the first

approximation becomes worse in that the entire integral is

multiplied by a larger number. Further, the subintegral, which
is neglected in the first approximation, is made more significant

by the factor 13-5 . In the pinch process, as observed in the

laboratory, the Argon experiences first and second ionization,
possibly even third; therefore, much of the energy
available is absorbed in the ionization process. Hence, the
real value of b 4 that may be expected would be closer to 1.1
than to 5/3.

Figures 2, 3, and 4 are based on a pinch time for the shock
of 1.0 microseconds. This gives a convenient basis for comparison.
There is no qualitative difference apparent if the time scale is
expanded as may be seen from Fig. 5 which shows a pinch time of
1.6 microseconds. Figure 2 shows a constant velocity shock (B = 0)
with the piston path computed for & = 1.1 and 1.667. For &= 1.667
it is seen that the first and second approximations for the piston
trajectory are very close together until the piston reaches a
radial position of 3/4. At this point, the second approximation
diverges from the first approximation and ultimately turns back
toward its initial position. This occurs as the denominator of
the integrand of the master equation approaches zero, beyond
which the second approximation is no longer calculated. Physically,
a decrease in the denominator corresponds to a decrease in pressure
at the piston. It is logical that the pressure decrease from the
shock to the piston at a given time because in this region of the
flow, there is, effectively, quasi—steady supersonic flow into a
converging channel, which implies a decrease in velocity and a
corresponding adverse pressure gradient. Since the conditions
behind the shock are fixed, the pressure at the piston must be

steadily decreasing as the gap between the shock and piston widens.

16
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When the pressure at the piston face reaches zero, the model
develops a singularity. Note that for 2 = 1.1 the piston
travels slightly more than half way to the axis of the cylinder
before turning around.

Figure 3 shows the results for an accelerating shock. For

? = 1.1 there is no difference large enough to be seen

between the first and second approximations until the second
approximation reaches the zero pressure limit. This occurs at
x(o ,T) = .27. Note that this radius is much smaller than the
final radius of the piston for the constant velocity shock.
This fact implies that the piston pushing an accelerating shock
has control over the shock for a longer time than the piston
pushing a constant velocity shock. For v = 1.667, the accelerating
shock has a piston path given by the second approximation that
is closer to the center than the first approximation. This is
due to the effect of the subintegral in the master equation.
That is, in order to accelerate the flow, the pressure at the
piston must be greater than the pressure at the shock. For the
first approximation, this pressure difference is neglected. 1In
the second approximation it is included. This effect is also
present for the ? = 1.1 case; however, it is so small that it
cannot be seen on the scale of Fig. 3.

Figure 4 shows the case of a decelerating shock. There is
little new on this graph except that the piston turns back even

sooner than it does for the constant velocity shock.

C. METHOD OF CHARACTERISTICS

It is of interest to determine what the real piston trajectory
looks like after the time when the first and second approximations
diverge. A third approximation was not attempted because of the
inherent limitations on numerical calculations of the needed
derivatives. Instead, it was decided to leave the master equation

and to attempt to find a solution by the method of characteristics.

18



If we make the assumption of isentropic flow behind the shock,

8,9 To have

we may use the equations derived in other references.
isentropic flow behind the shock, we must limit ourselves to a
linear shock in the r-t plane. This will be adequate to examine
the nature of the divergence of the previously found first and
second approximations.

It is first instructive to consider the problem of one-
dimensional, unsteady, isentropic flow in rectangular coordinates
with no area change. For this problem, it is known that the
characteristic directions in the t-x plane are u + ¢ and u - ¢
where u is the local flow velocity and c¢ is the local sound speed.
If a piston is pushed down a tube in such a manner as to set up
a strong shock propagating ahead of it, u and c will remain
constant throughout the flow field as long as the piston velocity
is constant. From the strong shock relations, u and c are

calculated to be

2__ g C_Eur_l)

UETye 1 = 7+ 1

U

where U is the velocity of the shock. In this problem, the
piston velocity is equal to the flow velocity. For Y= 1.667,
Fig. 6 shows a piston traveling at a speed of u - 3/4 pushing

a strong shock with speed U = 1. As seen from the figure, the
last signal that may be sent from the piston and received by the
shock before the shock reaches x = 1 must leave the piston before
the piston is at x = %. Thus the piston loses contact with the
shock after the piston has propagated half way into the medium.
The similar problem posed in cylindrical coordinates becomes
slightly more difficult. The equations governing one-dimensional,
unsteady, isentropic flow in cylindrical coordinates from the

Eulerian viewpoint are written:

Mass conservation  (p,) . 25 Pu

or continuity 2T 2t + r -0

19
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momentum or
Newton's Law

isentropic
relation

perfect gas
relation

and sound
speed

u|<u
K|
+
c
olqﬁ
e
+
wlw
e
1]
o

L1
F

P
= _ a
5 constant
P = fRT

2 _dp

Cc” = qf

These equations may be put in a more useful form as shown by

Courant and Friedrichs.

Continuity

Newton's Law

sound speed

12

ft+uj’r+fur+-%=0

2
Cfr+fuur+fut=0

(19)

C2 = constantJP)L'

where the subscripts here denote partial differentiation with

respect to the subscript.

shock trajectory RS

_ 2A
1 2+ 1

The shock conditions apply across the
L - At:

J%u 2
.P = T M = xJ
1 & 1 Je7 (-0
2foe 2 2 P&
P 3y + 1 €y =AY 11

21



giving

¥ a2 )'6’) -1

= o F
(o+ 1)},,,3“

By the normal recipe outlined in Appendix B, we find the

characteristic equations to be

I: dr = (u + c) dt II: dr - (u - ¢) dt
I: du+—2-dc+ 3 gt =0 II: du-—=%dc-34g¢t=o0
Ll y-1 r y-1 r

(20)

These equations are exactly the same as those for one-dimensional,

isentropic, unsteady flow with constant area, except for the term

%f dt which adds the only complication to the problem. Once
again we must resort to a computer program to find the solution.
The program used may be found in Appendix C along with some

comments on its structure.

D. RESULTS FROM CHARACTERISTICS

In Fig. 7 are shown the prescribed shock path, the piston
trajectory as found from the method of characteristics, and three
characteristic lines. The graph is drawn for & = 1.667. If we
consider the characteristics to run backwards from the shock to
the piston, we note that they bend in such a manner as to intersect
the piston trajectory much earlier than they would have if they
had remained straight. Turning this around so that the
characteristics run forward in time, we find that the piston
loses control of the shock much sooner in the imploding cylindrical

piston problem than it does in the constant-area piston-shock
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problem. Specifically, the piston loses control of the shock
by the time the piston is only about % of the way toward the
center of the cylinder. Recall thatthis is the same distance
that the first and second approximations to the master equation
for a linear shock coincided. When the results from the
approximate method are compared to the results obtained by

the method of characteristics, it is seen that the piston
trajectories for the given shock compare exactly. The longest
characteristic line shown in the figure intersects the shock
only at x = .35, because the program did not produce any
characteristic lines that extended further. These lines were
not produced due to convergence problems for the portion of the
cylinder close to the axis. Even the longest characteristic
line is cut off before it reaches the shock; this is also due
to a fault of the program. However, by estimating the paths of
future characteristic lines, it appears as though the fate of
the shock is determined by that portion of the piston's trajectory
that is very close to the beginning. After this very early
control of the shock by the piston, it matters not what path
the piston takes. Any message that is sent out from the piston
toward the shock after the piston has traveled more than % of
the way toward the center, will not be received by the shock
bafore the shock reaches the center of the cylinder. This
discussion has been for & = 1.667. For J any smaller, the
piston would control the shock for a longer period of time,

but would behave qualitatively the same.

E. INTERPRETATION

We now Xnow that the diverging portion of the first and
second approximations to the master equation solution for the
straight shock does noc have physical relevance. However, the
portion of the two approximations that do coincide is the true

solution for the piston driving the prescribed straight shock.
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Any answer from this time on must not be considered accurate
unless some further boundary condition is prescribed.

When this argument is extended to the accelerating and
decelerating shock trajectories, it would seem to imply that
where the first and second approximations are very close
together, the solution is good for the given boundary condition.
Referring to Fig. 2, 3, and 4 it is seen that for a given pinch
time and for a given 3’, an accelerating shock is controlled

more by its piston than is a decelerating shock.
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III. SUMMARY

The two major conclusions from this analysis are given
some qualified endorsement by experimental observations.

First, the small separation between the piston and shock for
the low & cases evident in Figs. 2-5 is not inconsistent
with the experimental inability to distinguish a shock front
from the intense luminosity of the current sheet on streak and
Kerr-Cell photographs. The theory suggests that if such
separation is to be observed, it will be most evident in cases
of rapidly decelerating fronts. These cases have not been
studied intensively in the past because of their low dynamic
efficiencies for propulsion purposes.

Second, the prediction that the shock trajectory is
determined by the very early portion of the piston path concurs
with the observed insensitivity of the pinch processes to the
nature of the inner portions of the electrodes. In many
experiments, all but the outer inch of electrode has been
replaced by glass, or removed entirely, with minimal effect
on the development of the pinch pattern.l

Clearly, the definitive experiments must involve a positive
identification of the shock fronts in relation to the current

sheets, presumably by sensitive pressure gauges. Such

Sritn e D e e o ra v rar =T+ 1 : 3
experiments are currently in progress, and their results will

g}

soon be compared with this theory.
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APPENDIX A

The following discussion concerns the numerical solution of
the nondimensional master equation, equation (14), given a
parabolic shock trajectory. If the shock has a constant
velocity, B = 0, then P = 0, making Q = 0© in equations (16).
Therefore, the equations must be recast for the degenerate

case of B = 0. Eguation (14) becomes

1 - % L
[ i
2 2 A* \
x (8, T) =X (1) +€ [ T g (14')
S
A2 1 Ok(g, ) _ag
\. 27
g 9

For the first approximation, neglecting the subintegral, eq. (14')

integrates to

2 L2 2 '
xfirst_xs+£(1—xs)-£¢ (15")
When Xespar 1S substituted back into (14'), Xsecond is found to
be
1 - %2
s L
F 4
2 _ Y2 2 & '
Xsecond” Xs +€& R dg (16")
g



where

2 2
X (1-&)X
Q=1+ &+ fn ES . R=——2 and F=R+ 1 (17')

The actual program used appears at the end of this discussion.
The card numbers shown are found at the end of each card printout.
Cards numbered from 90 to 930 are for the equations (14), (15),
(16), (17), and (18). Cards numbered from 940 to 1440 are for
equations (14'), (15'), (16') and (17'). The program was run
for A = .999 and B = .001 and was also run for A = 1 and B= O.
The answers were the same to three significant figures. The
general philosophy of the program is first to determine what
time steps to use, and then when the time steps are known, to
calculate all quantities that are dependent only upon time for
the first AT . Then, at the time under consideration, the
quantities that depend on @ are calculated. Specifically, the
value of the integrand for ¢ = ﬁs is first calculated (the
subintegral is zero at this peint). Then the values of @ for
which we want the particle positions spelled out are determined.
The program does this by taking ﬂs, rounding it off to the next
lowest .05, and then using Ag in steps of .05, the steps for
which the two numerical integrations are performed. The
subintegral is found for the interval from ﬁs to the next lower
@g. With this value of the subintegral, the total integral may be
found giving x for the rounded off @ and the time AT . Using
the next lower value of @, the next portion of the subintegral
is added to the value obtained above. Similarly, the next
portion of the entire integral is added on to the part already
found. This procedure is carried on until we reach the value
g = 0, which is the piston. At this time, we proceed to the




next time and repeat the entire process. Below are some

comments on some cards that may not be obvious.

Card
Numbexr

85

130
140
180
260

310,320

330
340
370
380
390

410

420
440
460

530

540

650, 660

715

Comments

If the shock is linear, B = 0, control is transferred
to statement 200, card #940, to avoid dividing by
zero as mentioned above.

TMAX is the pinch time of the shock.

R is the coefficient of the subintegral.

DELTAU is the time step used.

Gl = G', G2 = G", etc.

E and W are the parts of x"/x that depend only
upon time.

XT is the part of x2

First that depends only upon time.

PHIS = ﬂs the value of g at the shock at the time TAU.
HS is the value H(ﬂs).

GR = x"/x at the shock.

GAR is the value of the integrand at the shock.

If the difference between § and 0 is small, then
the whole integral will be 5erformed in one step.

HO is the value H(O0).
PF is the value of x"/x at @ = 0.
PAM is the value of the integrand at @ = O.

If the difference between ¢s and 0 is large, then
the integral will be computéd in steps.

First the integral is evaluated from ﬁs to SIGMA.

GR and GAR are replaced by PF and PAM respectively
for the next part of the integration.

If the denominator of the integrand is zero or
negative, control is switched to card #820.




Card
Number

750

820

940-1440

Comments

If SIGMA is equal to zero, then the piston position
has been calculated for this time, in which case
there is a special print out, TAU is increased by
DELTAU and the entire integration is performed
again. Otherwise, the value XFIRST, XSECOND, and
g = SIGMA are printed out followed by the next

step of the integration.

Since the pressure, according to the second
approximation, is now zero or negative, card #715, only
the first approximation is calculated and printed by
card #920.

The same procedure is followed except that it is
simplified by having a linear shock and no
subintegral. The equations for this portion are
shown in the initial part of this Appendix.



C

10

GLEN A. ROWELL~-~APPROXIMATE SOLUTION TO THE MASTER EQUATION
FORMAT (3F20.4)

20 FORMAT (3H A=F7.4y4H B=F7¢4,8H GAMMA=F6.3,10H EPSILON=F6.4,

TH TMAX=F9.6//)

30 FORMAT (53H1 FIRST AND SECOND APPROXIMATION TO THE PISTON PATH//)

40

FORMAT (5H TAU=F7.4, 13H XS=F6.49 15H PHIS=F6.4)

50 FORMAT (3F20.6)

60

61
65
18

12

70

80

FORMAT (2X4 7THXFIRST=F84.64 13H XSECOND=F8.6410H TAU=FT .4,
6H PHI=F&4.2//)
FORMAT (1HO///)
FORMAT (4H XS=FT7.4, 13H XFIRST=F7e4,y 10H TAU=F8.4/)
READ 104Ay By GAMMA
PRINT 30
IF(B) 12, 200, 12
S = 1./GAMMA
P = 4.#B/(A%A+4,%B)
EPSLON =(1.=-S)/(1s+S)
Q = 2.%EPSLON*GAMMA={A%A+4 5B )#xS/(P=Px(GAMMA+L1.))
TMAX = (=A+SQRTF(A=A+4,.#B))/(2.%B) '
R = le/{2ex(1e=EPSLON))
PRIMT 204Ay By GAMMA, EPSLON,y TMAX
NMAX = TMAX%20.
TAUMAX = NMAX
DELTAU = TAUMAX*.0025
TAU = DELTAU
XS = 1e-AxTAU-B=TAU#%2
A+2 o #BxTAU
U#u
10 - p*XS
Y#%S
U**(-Z.*S)
=444 SxBxG/U
164 #S#B*B=*(S+e5)%G/V
PaXS#ZaY+Z%Y%Y/(S+2.)
PaP#(S+1.)2XS%Z+U
~PaPx( S+l )#Z#%(V-PxS#XS%V/Y=2,%B%XS)
= 2.#V=4,#B#XS+Q#(G#*F2 + 2.#G1l=xF1 +G2%F)
= Q#(G#F1+G1l#F)=-2.#XS*U
= XS#%#2 + Q#GxF
PHIS = 1.=XS#=s2
PRINT 40, TAUy XSy PHIS

[AS IR
non

ZMTOMMNMITOOONC
N =
nwon

x
—t

RS = P#SQRTF(le-PHIS)
HS = RS#{1e=-RS)##(S+1le)+(1e=~RS)#%(S+2,)/(S+2.)
GR = (E-0#G2#HS)/(2e#XS#%2) = (W=QuGlaHS) %52/ (4 exXSx%4)

GAR = {({(A=A+4.%#Bx(1e~XS))/V)#2S

L = 20e%#PHIS

IF(L”I) 707 707 80

HO = P*(l.;P)**(s+1.)+(1.-P)**(S+2.)/(S+2.)
XFIRST = SORTF(XT=Q%G=HO)

PF = (E = Q#G2=HO)/(2+#XFIRST#%2) =~ (VW =Q#Gl#HO)%#2/ (4+#XFIRST#%4)
SUBINT = (PF + GR)/2.%#PHIS

PAM = (A*A/(V-SUBINT#*R))=#xS

BIGINT = (PAM 4 GAR}/2.%PHIS

X = SQRTF({XS#XS + EPSLON®#BIGINT)

PHI = 0.0

PRINT 60y XFIRST,y Xy TAUsy PHI

TAU = TAU + DELTAU

GO 70 3

C =1L

SIGMA = C#*.05

RSIGMA = P=SORTF{l.~SIGMA)

10

20

21

30

40

50

60

61

64

65

70

80

85

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550



55

87

100

90
110

120

130

200

170

-

HSIGMA RSIGMA#(1e—RSIGMA) ##(S+1e)+(1e~RSIGMA)##(S+24)/(S+2.)
XFIRST SQRTF (XT-Q#G#HSIGMA)

PF = (E-Q#G2*HSIGMA)/(2e#XFIRST#%2)~(W-Q%G1*HSIGMA) *=2

1 /{4 e % XFIRSTx24)

SUBINT = (PF + GR)/2.%(PHIS -~ SIGMA)

PAM = ((A#A + 4.%Bx(l. = SQRTF(le = SIGMA)))/(V = R*SUBINT))==S§
BIGINT = (PAM + GAR)#.5%(PHIS - SIGMA)

X = SORTF{XS*XS + EPSLON®#BIGINT)

PRINT 50, XFIRSTy Xy SIGMA

SIGHMA = SIGMA - 405

i "

GR = PF

GAR = PANM

RSIGHA = P#SQRTF(1le=SIGHA)

HSIGHA = RSIGMA#(1e—RSIGMA)##(S+1e)+(1e~RSIGMA) == (5+2.)/(5+24)
XFIRST = SORTF(XT=0#G*HSIGMA)

PF = (E=-Q#G2%HSIGMA) /(24 #XFIRST#%#2)=(W-Q%GL*HSIGHA)#*2
1 /(4o #XFIRST#%4)

SUBINT = SUBINT + (PF + GR)/40.

IF (V= R#SUBINT ) 120,120, 87

PAM = ((A*A + &4.%B#(1ls = SQRTF(le = SIGMA))}/(V = R=SUBINT))%xS
BIGINT = BIGINT + (PAM + GAR)#,025

X = SQRTF(XS#XS + EPSLOM=*BIGINT)

IF (SIGMA) 100, 90y 100

PRINT 509 XFIRSTy Xy SIGIHA

SIGMA = SIGMA - .05

GO 70 85

PRINT 60y XFIRSTy Xy TAU, SIGMA

TAU = TAU + DELTAU

IF (TAU - TMAX) 3, 18y 18

PRINT 61 )

H = p*(lo_P)**(S"‘l-)""(l."P)**(S+2.)/(S+20)
XFIRST = SQRTF{XS#XS + Q=G#F - Qu#GxH)

PRINT 65y XSy XFIRST, TAU

TAU = TAU + DELTAU

G = (A + 2.#B#TAU)#x{~2,%S)

XS = le = A#TAU - B#TAU*=2

F = PaXS%(le — PeXS)#x(1le+S) + (Le=PXS)%##(2.4S)/(2.+S)
H = P*(lo‘P)**(S"'lo)+(10-P)**(S+20)/(S+20)
XFIRST = SQRTF(XS#XS + Q%G#F — Q#G=H)

PRINT 655 XSy XFIRST, TAU

IF (TAU-THMAX]) 130, 18, 18

S = 1le/GANMA

EPSLUN =(le=S)/(1s+S)

THMAX = 1le/A ‘

PRINT 20yAy By GAiMiMAy, EPSLON, THMAX

NMAX = 20.*TMAX

TAUMAX = RNiMAX

DELTAU = TAUMAX+#.0025

TAY = DELTAU

XS = 1. - A%TAU

XFIRST = SQRTF ((le. - EPSLON) # XS#%2 + EPSLON )

Q = le. + EPSLON + LOGF(XS*XS/EPSLON)
R = (l. - EPSLON)#XS*XS/EPSLON
F =R + 1.

PHIS = 14-XS%=2

PRINT 40, TAUy XS, PHIS

GR = (2e#EPSLUON/(Q - LOGF(F=PHIS) = R/(F=PHIS)))*=xS
L = 204%PHIS

IF{L-1)170,170,180

RO = (2«%EPSLON/(Q-LOGF(F) = R/F))#=%S

BIGINT = (RO+GR)*PHIS/ 2

A-6

560
570
580
581
590
600
610
620
630
640
650
660
670
680
690
700
701
710
715
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
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X = SOQRTF{XS#XS + EPSLUN#*BIGINT) 1140

PHI = 0.0 1150
PRINT 60y XFIRSTy Xy TAUy PHI 1160

TAU = TAU + DELTAU 1170

GO TO 4 1180

180 C = L ' 1190
PHI = C#.05 1200

PF = (2%EPSLON/{Q = LOGF({F-PHI ) = R/({F=PHI }))}%=xS 1210
BIGINT = (PF+GR)=(PHIS-PHI)/2. 1220

X = SORTF(XS#XS + EPSLON®*BIGINT) 1230

X1 = SQRTF{(1,-EPSLON)*XS#%2 + EPSLON®{(l.-PHI)) 1240
PRINT 50y X1s Xy PHI 1250

185 GR = PF 1260
PHI = PHI - .05 1270

L = = LOGF(F-PHI}-R/{F=PHI) 1280
'IF(Z) 300, 300, 182 129G
182 PF = (2+%EPSLON/Z)#%%S 1300
BIGINT = BIGINT + (PF+GR)%4025 1310

X = SQRTF{XS#XS + EPSLON#BIGINT) 1320
IF(PHI)} 1904190,1100 1330
1100 X1 = SQRTF((1le=EPSLON)#XS%#2 + EPSLON=#{1l.=PHI)) 1340
PRINT 50y X1y Xy PHI 1350

GO TU 185 1360

190 PRINT 609 XFIRSTs X, TAU, PHI 1370
1110 TAU = TAU + DELTAU 1380
IF (TAU - TMAX) 44 18, 18 1390

300 X = SQRTF({le - EPSLON)*XS%x%2 + EPSLON) 1400
PRINT 65y XSy Xy TAU 1410

TAU = TAU + DELTAU 1420

XS = 1. = A=TAU . 1430

IF (TAU-TMAX) 300, 18, 18 1440

END 1450




APPENDIX B

The equations for continuity, Newton's law, and sound

speed are

ft+ufr+fur+€£=o

czfr +/uur + fut =0

02 = constant‘/’ah'

The equation for the speed of sound may be differentiated to

yield
2 g&c __d4df
-1 c P
Substituting . this into the two partial differential equations,
we find
2c _
u, + uu, + ¥- 1 °r =0
2 2u uc
cu +7—lct+i—lcr+r =0

In order to find the characteristic directions for this

pair of equations, we form an arbitrary linear combination of

them by multiplying the first equation by A and adding them. 14+ 13
2 2 Ac 2u uc
= + _—=
L_’\ut-'-(’\I'I‘F(:)ur-‘-i-lct+ Z-1 I—l)cr+r ©

We ask that this linear combination produce directional
derivatives of u and ¢ in the same directions. These directions,
which depend upon r and t as well as the values of u and c at
the point r,t, are the characteristic directions. For example,
the derivative of u is taken in the directions

at _ A
dr Au + c

B-1



If the derivative of c is taken in the same direction,

that

Hence there are two characteristic directions

dr = (u + c) dat and dr = (u - ¢) 4t
Substituting A =1 and u + ¢ =~%§ into L, we find
_ du Qu _dr 2_ 2c 2 _9dc¢ _dr uc_ _
L=%t*"2r a&*71 2t "1 2r at " ¢ =
or
- —du 2 _dc _ uc _
L= *J-1ac*r =0

it means

This is the characteristic equation that corresponds to the

characteristic direction given by A = 1. Similarly,

A= -1, we find the characteristic equation to be

du - dc-l‘fdt=o.

>-1

for




APPENDIX C

The general philosophy of this program is to calculate from
the characteristic equations, equations (20), the characteristic
directions and the values of the velocity and sound speed on a
grid in the r-t plane. One set of grid lines is parallel to the
shock trajectory at intervals of DT. The other set is
perpendicular to the r axis and is spaced at intervals of DR.
The piston position is calculated from the flow velocity of the
particle that began at x = 1. ©Note that the flow velocities are
negative since the flow direction is in the -r direction. The

notation used is shown in the figure below

A

SHOCK

TRAJECTORY
DT
oT
N— -

AN\ j—DT

] 1 1 1 1 L 1 >
X

Figure 8

UI refers to the average flow velocity along the characteristic
I. That is UI = %(UA + UP), where UA refers to the flow velocity
at the point A and UP at the point P. Similarly UII is the
average flow velocity along a II characteristic. CI, CII, RI,




and RII are the average sound speeds and positions. The
quantities RA, UA, CA, TA, RP,..., RB,..., RK,... are the values
of the position, flow velocity, sound speed, and time at the
points A, P, B, and K. 1Initially, the piston position is found
by assuming UP = U, the velocity behind the shock. Having this
position, I and II characteristics are found assuming UI = U - UII
and CI = C = CII where C is the speed of sound immediately
following the shock. With the initial assumption that DELCI,

AC along the I characteristic, is zero, DELUI, the change in
flow velocity along the I characteristic may be found from the
characteristic equations. With this information, DELUII may be
found. Then DELCII may be calculated. With all this information,
a new UP and CP may be found. Finally, a new average flow
velocity of the piston may be found giving a new piston position.
Meanwhile, the new values of UI are compared to the old values
to determine whether the procedure should be done again.

Further, the new values of RP and TP are also compared. When
this has been done, the first grid point on the line parallel
to the shock trajectory that is closer to the center of the
cylinder is determined. For this point, RA, TA, RB, TB, UA, CA,
UB, CB, RK, TK, UK, CK, UI, UII, CI, and CII are found and
recorded. When this first line parallel to the shock is found,
the conditions along the second line are found in much the same
manner. However, the conditions at A and B are not so easily
found because these points may fall between the previously
recorded grid points. Therefore, a simple interpolation is
performed.

, L is defined in the program and printed out so that we know
what leg of the program is being computed. The quantity A is
read into the program from the data card, determines the shock

pinch time as 1/A. G represents Gamma.
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10 FURMAT(51H1 STRAIGHT SHOCK BY CHARACTERISTICS, GLEN A. ROWELL///)

15 FOURMAT(5F1246)
17 FORMAT(6HGAMMA=F6.3y 11H DELTA R=F5.3y 11H DELTA T=Fb6.4,

1 5H A=F5.2412H 1 PART IN F6.0//)

20 FORMAT (20H ‘ 0=F13.6y l4H LEG NO.TIZ2)

30 FORMAT (2F20.6)

40 FORMAT (9HORPISTON=F7.4y 12H TPISTON=F7.4 4 16H PISTON MACH=
1 : F Te4 /)

50 FORMAT(3H R(I292H)=Fbe4s4H T(I292H)=FT7e4s4H MII242H)=F7.4)

60 FORMAT (2F9e49+12H UI+CI=FT7e4y 2F944,414H UII-CII=F7e%)

70 FORMAT (4H RA=F6.446H TA=F 744, 10H RB=F6.+4,6H TB=FT7.4///)

80 FORMAT(1H1)
5 READ 154 Gy DRy DTy Ay PCENT

PRINT 10
PRINT 17, Gy DRy DTy Ay PCENT
EPSLON = (G=14)/(G + 1.}
U -2¢/(G+1,)
C SQRTF{=-U#G*EPSLON)
N 1./DR
DIMENSION R1( 100)y Ul( 200), T1( 100), C1( 200)
R1({1) = 1. - DR
Ti1{(1) = DR
DO 100 I = 24N
TI(I)=T1(I-1) + DR

100 R1(I)=R1(I-1) -DR
vV = U
Ul = U
UIl
C1
CIlI
DELC 0.
DELCII = 0.
TP = DT/(1ls + V)
RP = 14 + VTP

o n

HooCc

s /I I T}

120 DELTI = DT/{(le + UI + CI )
RA = RP - (Ul + CI )% DELTI
RI = (RA + RP} # .5

130 DELUT = -2, # DELCI/(G~-1ls) — UI=CI=*DELTI/RI

UP = U + DELUI
UTA = (U +UP)*.5
Ull = UIA
DELUITI = DELUI
DELTII = ODOT/(le + UII - CII)
RB = RP - (UII - CII)* DELTII
RIT = (RB + RP) = ,5
DELCII = (DELUIT - UII # CII #DELTII/RII)*(G-1.}/2.

CP = C + DELCII
CII = (CP + Cl)#d5
CI = (CII+CI)*®.5
0 = ABSF((UIA - UI}Y/UIA®PCENT)
L =1
PRINT 20, Oy L
DELCI =(DELCII+DELCI)*.5
UI = (UIA + Ul)=,5
IF(D-1.) 150, 120, 120
150 V = (UP + U )*,5
TG = DT/(1. + V)
RG = 1. + VTG
P = ABSF((TG - TP)/TG = PCENT)
Q = ABSF((RG = RP)/RG = PCENT)
PRINT 30y, Py Q

10
20
30
31
40
50
60
61
70
80
90
100
110
120

130

140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590



160

140

170

175
180

RP = RG
TP = TG
IF ( P+Q-1.) 160y 160,y 120

TPISTN = TPxA

GMPSTN =-UP/CP

W UI/A

CI/A

UII/A

CII/A

DELTI*A

DELTII=A

W+ X

Y - 2

A = TPISTN - E

TB = TPISTN - F

PRINT 404y RPy TPISTN, GMPSTN
PRINT 60y Wy Xy By Yy Zy» D
PRINT 70y RA, TA, RBy TB

X
Y
Z
E
E
B
D
T

K= (ls - RP)/DR +1.
R =R1(K)
TL(K)=T1(K) + DT
T =T1(K)
DELTI = DODT7/(l. + UI + CI )
RA =R - (UI + CI )= DELTI
RI = (RA + R ) % .5
DELUI = -2+ # DELCI/(G-1ls) — UI*CI#DELTI/RI
UK = U + DELUI
UIT = (U + UK)#.5
"DELTII = OT7/(l. + UII - CII)
RB = R = {(UIl - CII)® DELTII
RIT = (RB + R ) = .5
DELUII = DELUI :
DELCII = (DELUIT - UII = CII #DELTII/RII)=(G-1l.}/2.

DELCI =(DELCII+DELCI)=®*.5

CK = C + DELCII

CII = (CK + C ) =.5

CI = (CI+CII)#.5

UIA = (U +UK}=%.5

0 = ABSF((UIA - UI)/UIA%PCENT)

~

L= 2
PRINT 20, O,y L
Ul =(UIA+UI)*.5

IF (0 - 100.) 175, 190, 190
IF(D-1.) 180y 140, 140

Ul{K)= UK
Cil{K)= CK
GMACH =-UK/CK
TR = T#A

W = UI/A

X = CI/A

Y = UIl/A

Z = CII/A

E = DELTI=A
F = DELTII=A
B = W + X
D=yY -1

TA = TR - E

TB = TR - F
PRINT 50y Ky Ry Ky TRy Ky GMACH
PRINT 60y Wy Xy By Yy Z9 D
PRINT 70y RA, TA, RBy TB
c-4

600
610
620
630
640
650
660
670
680
690
700
710
120
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880

890

900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200



190

195

200

205

210

220

K = K+1

R =R1(K)

TL(K)=TL(K) + DT

T =T1(K)

IF (T-1.) 140, 190, 190
TPAM TP

RPAM RP

UPAM yp

CPAM o

PRINT 80

KMAX = K - 2

V = UpP ,
TP = TP + DT/(le+V)

IF (l. - TP) 54 5, 195
RP= RP+V# DT/(1le+V)

Ul = UP

UIl = UP

Cl = CP

Cil = CP

DELCI = 0.

DELTI = DT/(1l. +# UL + C(CI )

RA = RP - (UI + (CI )= DELTI

RI = (RA + RP) # .5

IA = (1l.~RA)/DR

CA = (RA =-R1(IA))#(CL(TIA)=~C1(IA + 1))/DR +C1(1A)
UA = (RA -R1(TA))=(UL(TIA)=-UL(IA + 1)})/DR +UL(IA)
UI = (UA + UP)#,5

Cl = (CA+CP)*,.5
-DELUI = -2+ # DELCI/(G-1le) = UI#CI#DELTI/RI

UP = UA + DELUI

DELTII = DT/(1e + UII - CII)

RB = RP = (UII - CII)# DELTII

RII = (RB + RP)} % .5

IB (1.-RB)/DR

IF (KMAX-IB) S, 205, 205

CB
uB

(RB =R1(IB))*(CL(IB)-C1(IB
(RB =~R1(IB))={(UL(IB)-UL(IB

1))/DR +C1(18)
1})}/DR +Ul(1IB)

W n -1

+
4

UII = (UB + UP)x.5

CII= (CB+CP)%.,5

DELUII= UP - UB

DELCII = (DELUII - UII % CII #DELTII/RI
CP = CB + DELCII

CII = (CP + CB)%.5

DELCI =(CP-CA+DELCI)#*.5

CI ={(CP + CA)} = ¢54CI)%.5
UIA = (UA+UP)#.5

O = ABSF((UIA - UI)/UIA*PCENT)
L = 3

PRINT 20y Oy L

UI =(UIA+UI)*®.5

IF(0-1.) 210y 200, 200

V = (UPAM+UP)#.5

TG = DT/(1e + V) + TPAM

RG = RPAM + V#DT/(1le+V)

P = ABSF{(TG = TP)/TG = PCENT)
Q = ABSF((RG = RP)/RG = PCENT)
PRINT 30y Py Q

RP = RG

TP = TG

IF ( P+Q-1.) 220, 220, 200
TPISTN = TP=A

-
-
B
—_—
3]
1
e
L ]
-~

1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810



230

233

235
240

GMPSTiv =~UP/CP

W= UI/A
X = CI/A

Y = UIL/A

Z = CII/A

£ = UELTI®A
F = DELTII®A
B = W + X
D=yY -2

TA = TPISTH - E

T6 = TPISTM - F

PRINT 40y RPy TPISTity GIIPSTN
PRINT 60y Yy Xy By Yy Zy D
PRINT 70, RAy TAy RBy T3

K = (1. = RP)/UR +1.

KKEEP = K

R =R1(K)

TLIK)=TL(K) + DT

T =TL1(K)

UK = UP

CK = CP

DELYI = DT/(1. + UI + CI )

RA = R = (UI + CI }# DELTI

RI = (RA + R ) % .5

IA = (1.-RA)/DR

CA = (RA -RLI(IA})*(C1{IA)-CL(IA + 1))/DR +CLl(IA)
UA = (RA =-R1I(IA))}=(UL(TA)=-UL(IA + 1))})/DR +U1l(IA)
UI = (UA + UK}#.5

-CI = (CA+CK)=.5

DELUI = -2. % DELCI/(G-1e¢) = UI*CI#DELTI/RI

UK = UA + DELUI

DELTII = OT/(l. + UII - CII)

RB = R == (UIl - CII)s DELTII

RIT = (RB + R ) # .5

IB = (1.-RB)/DR

IF(IB-KMAX)} 233y 233, 250

CB = (RB -R1(IB))*(C1(IB)-C1(IB + 1))/DR +C1l(IB)

UB = (RB ~-R1(IB))=(UL(IB)-UL(IB + 1))/DR +Ul(IB)

UIT = (UB + UK)=*.5

CII= (CB+CK)#45

DELUII = UK - UB :

DELCIT = (DELUII = UII * CII #DELTII/RII)={(G-1.)/2.
CK = CB + DELCII

DELCI =(CK-CA+DELCI)=*45

CI =((CK + CA)#.5+CI)%.5

UIA = (UA + UK)%.5
0 = ABSF((UIA = UI)/UIA%PCENT)
L = 4

PRINT 20, 0Oy L
U =(UTA+UI)%*.5
IF (0 - 100.) 235, 250, 250

IF(0-1.) 2404 230, 230
J = N+K

Ul(J)= UK

GMACH =-UK/CK

TR = TxA

W = UI/A

X = CI/A

Y = UII/A

Z = CII/A

E = DELTI=A"

1820
1830
1540
18506
1860
137C
1330
1890
1900
1910
1920
1630
1940
1950
1960
1970
1980
193G
2000
20106
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420



250

260

DELTII=A

W o+ X

Y - Z

TA = TR - E

TB = TR - F 4

PRINT. 50y Ky Ry Ky TRy Ky GHMACH
PRINT 60y Wy Xy By Yy Zy D
PRINT. 70y RAy TAy RB, TB

Cl(J)= CK

Q3T
H n n

K = K+1

R = R1(K)
TL(K)=T1(K} + DT
T =T1(K)

IF (T-1.) 230, 250, 250
K=K-=1

KMAX = K

DO 260 I = KKEEP, K

IT =1 + N

ul(riy=ui( 11 )~
Cr(i)=C1( 11 )

GO TO 190

END

2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
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